The book covers a wide range of known models, from classical (Cobb-Douglass production function, Leontief input-output analysis, Verhulst-Pearl and Lotka-Volterra models of population dynamics, etc.) to the models of world dynamics and the models of water contamination propagation after the Chernobyl nuclear catastrophe. It uses a unique block-by-block approach to model analysis, which explains how all these models are constructed from common simple components (blocks) that describe elementary physical processes. The book provides theoretical insights to guide the design of practical models. Special attention is given to modeling of hierarchical regional economic-ecological interaction and technological change in the context of environmental impact. Mathematical topics considered include discrete and continuous models, differential and integral equations, optimization and bifurcation analysis, and related subjects. The book presents a self-contained introduction for those approaching the subject for the first time. It provides excellent material for graduate courses in mathematical modeling. Audience: Researchers, graduate and postgraduate students, and a wide mathematical audience.
Reviews with the most likes.
There are no reviews for this book. Add yours and it'll show up right here!