Students preparing for courses in real analysis often encounter either very exacting theoretical treatments or books without enough rigor to stimulate an in-depth understanding of the subject. Further complicating this, the field has not changed much over the past 150 years, prompting few authors to address the lackluster or overly complex dichotomy existing among the available texts. The enormously popular first edition of Real Analysis and Foundations gave students the appropriate combination of authority, rigor, and readability that made the topic accessible while retaining the strict discourse necessary to advance their understanding. The second edition maintains this feature while further integrating new concepts built on Fourier analysis and ideas about wavelets to indicate their application to the theory of signal processing. The author also introduces relevance to the material and surpasses a purely theoretical treatment by emphasizing the applications of real analysis to concrete engineering problems in higher dimensions. Expanded and updated, this text continues to build upon the foundations of real analysis to present novel applications to ordinary and partial differential equations, elliptic boundary value problems on the disc, and multivariable analysis. These qualities, along with more figures, streamlined proofs, and revamped exercises make this an even more lively and vital text than the popular first edition.
Reviews with the most likes.
There are no reviews for this book. Add yours and it'll show up right here!