This book is primarily concerned with the study of cohomology theories of general topological spaces with "general coefficient systems." The parts of sheaf theory covered here are those areas important to algebraic topology. There are several innovations in this book. The concept of the "tautness" of a subspace is introduced and exploited throughout the book. The fact that sheaf theoretic cohomology satisfies the homotopy property is proved for general topological spaces.
Relative cohomology is introduced into sheaf theory. The reader should have a thorough background in elementary homological algebra in an algebraic topology. A list of exercises at the end of each chapter will help the student to learn the material and solutions of many of the exercises are given in an Appendix.
The new edition of this classic in the field has been substantially rewritten with the addition of over 80 examples and of further explanatory material. Among the items added are new sections on Cech cohomology, the Oliver transfer, intersection theory, generalized manifolds, locally homogeneous spaces, homological fibrations and p-adic transformation groups.
Reviews with the most likes.
There are no reviews for this book. Add yours and it'll show up right here!
Featured Series
152 primary booksGraduate Texts in Mathematics is a 152-book series with 152 primary works first released in 1899 with contributions by G. Takeuti, W M Zaring, and 166 others.